探访在种业科研和创业热土中成长的三亚“南繁硅谷”******
(二十大时光)探访在种业科研和创业热土中成长的三亚“南繁硅谷”
中新网三亚10月23日电 题:探访在种业科研和创业热土中成长的三亚“南繁硅谷”
记者 王晓斌 李宇凡
晚秋的三亚,午间阳光依然炙热。在崖州区坝头南繁基地,由太阳能电池板提供能源,生态监测系统、物联网虫情信息采集系统不间断工作。
三亚崖州区坝头南繁基地田间地头的仪器设备林立。 王晓斌 摄当地村民口中,坝头南繁基地有一个简短的名字——“三千斤”。上周,“三千斤”迎来又一次测产,晚造水稻平均亩产671.6公斤。加上早造水稻平均亩产910.0公斤,双季稻亩产超过了1500公斤。
彭军在崖州湾科技城的实验室里工作。为了提高利用率,科技城搭建了一个大型仪器设备共享平台。 王晓斌 摄“‘水稻双季亩产三千斤’是袁隆平院士生前力推的项目,目的是通过可推广的技术措施,挖掘和展现水稻的高产潜能。”海南大学三亚南繁研究院常务副院长杨小锋说,基地连续两年达成双季亩产三千斤目标,意味着袁老生前安排的最后一个实验项目圆满完成。
“除了开展‘三千斤’项目,基地还为中国农业大学(下称“中国农大”)、南京农业大学等十多家科研单位提供服务。他们每年入秋来这里开展水稻、玉米、大豆、牧草等南繁工作。”杨小锋说,水稻收割完成后,“三千斤”将为冬春季节的南繁育种做准备。
隆平生物研发的“隆平”系列产品与其他品种的对照。 王晓斌 摄海南冬春时节的光热条件适合农作物加代育种。每年全国各地秋收后,近30个省份800多家科研院所、高校及企业的数以万计农业科技专家,来海南从事南繁育种制种工作。南繁基地由此被称为中国新品种选育的“孵化器”和“加速器”,保障农业生产用种的“调节库”和种子质量天然的“鉴定室”。
“山东秋收完来三亚下种,到来年4月收获两季后,再回到山东继续播种。”邓伟强是登海种业南繁“打前站”工作负责人。今年因为三亚降雨等因素,玉米播种延迟,为抢回时间,邓伟强和同事们用“洗苗”的方式,将五、六百个品种的玉米秧苗“洗”到了苗床。
10月北方一些地区玉米秋收时,海南三亚南繁地里的玉米处于苗期阶段。 王晓斌 摄几十年候鸟般的南繁工作,邓伟强等南繁人积累了充分的经验来应对台风、旱涝、寒潮等天气状况,也亲历南繁生活条件、育种方法的巨大改变。“早年翻地整地找不到车,我们从山东托运几台农机车来。现在一个电话,立马人车就到地里。”邓伟强说,过去靠扩大面积多种材料来选育良种,现在团队利用玉米单倍体育种、分子标记辅助育种等技术手段,大大提升了育种效率。
近年来,乘着自由贸易港建设东风,围绕粮食稳产高产、种业突破创新,海南加快南繁科研配套服务区建设,构建集科研、生产、销售、科技交流、成果转化为一体服务全国的“育繁推服”种业全链条。
为抢回降雨等因素延误的时间,海南三亚,南繁人用“洗苗”的方式,将玉米秧苗“洗”到了苗床。 王晓斌 摄以海南自贸港重点园区三亚崖州湾科技城为核心,“南繁硅谷”在海南轮廓初现。
当前,中国种业由表型选择时代朝分子育种时代、设计育种时代迈进,崖州湾科技城诞生的首批企业隆平生物技术(海南)有限公司(简称“隆平生物”)争做领军者。
三亚崖州区坝头南繁基地,收割完水稻后,这片田地将为新一轮冬春南繁季做准备。 王晓斌 摄“我们使用手机时,手指划划点点很简单,背后的芯片设计制造却是极为复杂。现代育种手段也是一样。”隆平生物总经理吕玉平介绍,秉承袁老“奋斗不息,创新不止”的教诲,该公司聚焦玉米、大豆等主要农作物,进行精准生物育种及植物合成生物学产品研发。目前已建成分子生物学、遗传转化、性状分析及一年四代回交等研发技术平台。
借助自建的研发平台,该公司在玉米生物育种等方面取得诸多进展,获得了20余项专利。“我们的技术突破瓶颈在国际上处于领先梯队。”吕玉平说,市场对此报以认可,“从三年前的一千万元初始创业资金开始,公司完成多轮融资,引进了多个战略股东,目前估值逾30亿元。”
隆平生物的一间实验室里,科研人员在头顶的白板上画了一对兔耳,使严肃的科研工作变得俏皮而温馨。 王晓斌 摄崖州湾科技城成为种业科研和创业的热土。以隆平生物为代表,三年来从无到有、从少到多,目前有300多家农业企业入驻园区。同步纷纷入驻的涉农科研院所和高校,为企业提供了亟需的人才和科技支撑。
从候鸟般开展南繁工作到常驻三亚,中国农业科学院国家南繁研究院院长、海南省崖州湾种子实验室副主任彭军见证并参与该院两年多来的实体化建设,成果包括农业农村部基因编辑创新利用重点实验室(海南)揭牌成立,国家野生稻种质资源圃一期基本建成,中国农科院南繁研究院“作物表型组学研究”“野生作物种质资源保护与利用”等9个创新团队入驻。
建设中的三亚崖州湾科技城(摄于2022年4月)。 吕超 摄“二十大报告中指出‘全方位夯实粮食安全根基’‘确保中国人的饭碗牢牢端在自己手中’。作为一名农业科技工作者,我感到莫大的鼓舞和鞭策。”彭军说,二十大报告提出,加快实施创新驱动发展战略,这正是崖州湾科研工作者努力的方向。
朝着这个方向,海南省协同全国20家科研院所、高校和企业,在崖州湾科技城搭建种子实验室,协同攻关种业的关键核心技术。目前,有26个院士团队落地科技城开展科研工作,园区在培硕、博研究生2千多名。
中国农大三亚研究院博士孙茜是其中之一。在今年6月举办的2022年首届“崖州湾杯”科技创新大赛上,孙茜带领一个跨学校、跨专业、跨研究领域的团队,凭借“基因工程改造玉米蛋白质”项目夺得大赛一等奖。孙茜表示,团队获奖离不开该院引导资金项目和崖州湾种子实验室“揭榜挂帅”项目的资金支持,离不开崖州湾科技城提供先进的实验设备和良好的实验环境。(完)
时空穿越不再是梦?科学家成功模拟“全息虫洞”!****** 近日,科学家打造出 “全息虫洞”的消息冲上热搜 引发了大家的讨论 虫洞是什么? 我们真的能用它穿越时空吗? 今天一起了解虫洞 01虫洞?是虫子住的洞吗? 宇宙中的虫洞是科学家推测可能存在的一种特殊隧道,它的两头连接着两个遥远的时空,理论上说,如果能从虫洞的一端穿越到另一端,就能实现超越光速的时空旅行。 电影《星际穿越》中结尾主角就是进入了虫洞,发生了时空穿越。感兴趣的同学可以去看看哦! 图源:截图 电影星际穿越中的画面 要理解虫洞,我们首先要理解“黑洞”和“白洞”。在霍金的两大科普著作《时间简史》《果壳中的宇宙》的帮助下,黑洞这一概念早已深入人心。它是在恒心死亡时,由于体积收缩,密度变大,获得使光也无法逃脱的巨大密度的一种天体。而所谓白洞,其实就是和黑洞具有相反性质的特殊天体,特点是不断往外“吐”出东西,只发射而不吸收。 一个吞噬一切,一个“吐出”一切,大家可以想象一下,如果一个黑洞恰好连上了一个白洞时会怎么样呢?这时就会形成虫洞(worm hole)。 图源:中科院理论物理研究所 虫洞示意图 1915年,爱因斯坦提出了广义相对论,在爱因斯坦的理论中,空间和时间不再是绝对的、不可变的,而是可塑的、相互依存的,且它们会受物质存在的影响。1935年,爱因斯坦和他的助手罗森在广义相对论的框架下研究黑洞,首次提出“爱因斯坦-罗森桥”的概念,这座“桥”连接了时空中两个不同区域的通道。上世纪50年代,物理学家惠勒将这座桥命名为“虫洞”。 这听起来是不是很令人心动?进入虫洞,你可能会出现在宇宙的任意一个角落,甚至穿越时空,改写你的人生,重新选择你曾经后悔的事。然而,虽然广义相对论允许虫洞的存在,物理学家还从未在宇宙中观测到虫洞,目前只有黑洞被人类实际观测。 02量子虫洞又是啥? 虽然我们还没有在宇宙中发现虫洞,但现在科学家们创造出了虫洞,还观察到了信息在虫洞之间传递的现象。不过,先别想着穿越时空,这个虫洞并非上述所讲的引力虫洞,而是一个量子虫洞。 日前,英国《自然》(Nature)杂志发表的一篇论文首次报道了利用一台量子处理器对全息虫洞进行量子“模拟”。这个全息虫洞成功地将量子态通过虫洞,由一个量子系统传递到了另一个量子系统。 如果我们想象中可以时空旅行的虫洞叫作“时空虫洞”的话,量子态的量子虫洞则可以称之为“微型虫洞”。 那么,研究量子虫洞有什么用呢? 这是因为,广义相对论和量子力学虽然各自都发展了很长一段时间,但它们之间仍然有一个根本性的“冲突”——量子引力。 具体来说, “广义相对论”描述了引力且在恒星、行星、银河上等大尺度上都适用;而“量子力学”描述了其他3种作用在微观尺度的基本力。这二者是否有“握手言欢”的可能?这就要看量子引力的表现。 物理学家们当然想通过实验去检验,但很遗憾,量子引力的能量与尺度,此前的实验室条件是无法模拟和观测的。而这就是“全息”的用武之地,它可以帮助物理学家创建一个与原始系统相当,但不太复杂的系统。这类似于用二维全息图显示三维图像的细节。 03量子虫洞是怎么创造出来的? 2019年谷歌的物理学家们提出了一种实验假说,认为一个在物理实验室中可以再造的量子态,能被解释为在两个黑洞之间的虫洞中穿越的信息。 现在,来自谷歌、MIT、费米实验室和加州理工学院的科学家们,用9个量子位、1台量子计算机模拟出了对应的量子动力学。在同一个量子芯片中,他们创建了两个纠缠的量子系统,并将一个量子位放入其中一个量子系统。结果,他们在另一个量子系统中观察到了这个量子位“穿越虫洞”而来的信息,结果符合预期的引力性质。 这是什么意思?大家可以设想在两组纠缠粒子之间,穿上一根电线或其它任何的物理连接,让粒子们编码出虫洞的两个口。 在这种耦合作用下,操作其中一侧的粒子,会引起另一侧粒子的变化。这样就有可能在两侧粒子之间撑开一个虫洞。 图片来源:inqnet/A.Mueller 量子计算机的模拟显示了信息如何通过虫洞 尽管存在争议,但是这项前所未有的实验,探索了时空以某种方式从量子信息中产生的可能性。随着量子装置的不断改进,错误率会更低,芯片会更强,那么对引力现象的研究也会更加深入。 END 资料来源:中科院物理所、极目新闻、科技日报、环球科学、量子位 整理:董小娴 (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |